An Infrared and Raman Spectroscopic Investigation of Copper(II) Tetracyanonickelate Complexes of α -, β - and γ -Picoline

SEVIM AKYÜZ*

International Centre for Theoretical Physics, Trieste, Italy

(Received: 1 August 1985)

Abstract. Copper(II) dipicoline tetracyanonickelate complexes, $CuL_2Ni(CN)_4$ ($L = \alpha$ -, β - or γ -picoline), have been prepared for the first time and their infrared and Raman spectra are reported. Their structure consists of polymeric layers of { $Cu-Ni(CN)_4$ }_∞ with picoline molecules bound directly to the copper. It is proposed that the Cu-NC bonds are in two nonequivalent pairs in trans positions. Low temperature (83K) IR spectra have also been recorded and it is noted that the Ni(CN)₄ group frequencies increase with decreasing temperature while the picoline frequencies are insensitive to temperature.

Key words: IR and Raman spectra, tetracyanonickelate complex, α -, β - and γ -picoline complexes.

1. Introduction

The infrared and Raman spectra of Hofmann-type clathrates with the general formula $M(NH_3)_2M'(CN)_4 \cdot 2G$, where M is the metal being in six-coordination with two NH₃ molecules and four nitrogen atoms of CN ligands, M' is the metal being in four-coordination with four carbon atoms of CN and G represents the guest molecules, have been studied in detail [1–5]. Based on this structure, several metal complex hosts, $ML_2Ni(CN)_4$, have been developed by replacing the ammonia molecules by other N-donor ligands (L) [6-10]. Among the series of metal (II) tetracyanonickelate host lattices, copper(II) complex hosts show in some cases [3,6] different spectral features in comparison with analogous complexes with other metals, due to the Jahn-Teller effect [11-12], which occurs in Cu²⁺ complexes and leads to two nonequivalent trans pairs of Cu-NC bonds with different lengths. For the Jahn-Teller effect in octahedral-type copper(II) complexes two bonds are either longer or shorter than the other four. When four of the ligands surrounding the metal are of one type (e.g. CN⁻) and two of a second type (L), the four similar ligands may be expected to have equal metal-ligand bond lengths, but this is not always the case. Although in the cases of Hofmann type $Cu(NH_3)_2Ni(CN)_4 \cdot 2G$ (where G = benzene, pyrrole, or thiophene) clathrates, the four Cu-NC bonds were found to be equal [13], the Cu(NH₃)₂Ni(CN)₄ · 2C₆H₅NH₂ clathrate [3] and the Cupy₂Ni(CN)₄ complex [6] have two pairs of nonidentical M-NC bond lengths. Thus, it is of interest to investigate the spectroscopic features of the new Cu(II) dipicoline tetracyanonickelate, CuL₂Ni(CN)₄ (L = α -, β - or γ -picoline) (abbreviated to Cu-Ni-L) complexes. These complexes can form inclusion compounds with various molecules. We will report our spectroscopic studies on these inclusion compounds in a future publication, but a necessary first task is the interpretation of the spectra of the pure complexes.

α-picoline		β-picoline				Assignment	
Liquid ^a	Cu-Ni-α pic IR	Liquid ^a		Cu-Ni- β pic			
IR		IR	Ra	IR	Ra		
3080	3087	<u> </u>	3085	3086	3090	A'	v, CH str.
3046 ^b	3070	_	3054	3062	3070		v_2 CH str.
1233	1220	1227	1227	1249	_		v_2 X-sens.
1590	1607	1595	1594	1613	1613		v, ring str.
1475	1487	1479	1477	1484	_		v _e ring str.
	1162						
1143	1153	1188	1190	1201	1199		v_6 CH bend i.p.
1047	1071	1043	1041	1061			v- CH bend in
1017	804	1015	10.11	833			17 Oli bolia i.p.
800	790	-	810	822	825		v ₈ X-sens.
00/	1016	1028	1025	1035	1039		v ring str
5/18	550	538	535	530	542		v_{g} mig su.
2020	2087	3085	555	3108	542		v_{10} A-sens.
2020	3037	5085	3030	3040	_		v_{11} CH str
1565	1560	1578	1575	1584			v_{12} cm str.
1440	1440	1370	1/00	1/22	-		v_{13} ring str.
1440	1292	1414	1226	1422	-		v_{14} ming str.
1370	1362	1540	1330	1074	_		v_{15} mig su.
1291	1303	-	1280	12/4	_		v_{16} CH bend l.p.
308	390	338	330	1100	_		v_{17} A-sens.
1099	1109	1106	1103	1109	-		v_{18} CFI bend i.p.
628	639	630	628	658	657		<i>v</i> ₁₉ ring def. i.p.
972	968	987	984	-	-	Α″	v ₂₀ CH bend o.p.
883	-	923	919	922	-		v ₂₁ CH bend o.p.
403	433	399	398	417			v_{22} ring def. o.p.
940	948	941	942	943	-		v ₂₃ CH bend o.p.
751	754	788	795	792	-		v ₂₄ CH bend o.p.
729	723	708	710	699	-		v ₂₅ ring def. o.p.
470	473	457	454	-	-		v ₂₆ CH bend o.p.
207	-		217	-	221		v ₂₇ X-sens.
2950	2955	2980	2975	2969 2942	-		v_a (CH ₃)
2925	2919	-	2923	2920	2920		v_{s} (CH ₃)
1440	1449	1452	1453	1452	-		δ_a (CH ₃)
1376	1381	1385	1380	1384	1386		δ_{s} (CH ₃)
1040	1042	1043	1041	1039	_		CH ₃ rock
					244		v(M-N)pic.

Table I. Fundamental vibrational wavenumbers (cm⁻¹) of α - and β -picoline in the Cu-Ni-L complexes

^a Taken from ref. 14 except v_{11} in the case of β -picoline. ^b Raman line.

2. Experimental

The complexes were prepared employing a method analogous to that used for quinoline complexes [9]. The samples were analysed for metal content using the X-ray fluorescence method.

The IR spectra of mulls and discs were recorded on a Perkin-Elmer 621 spectrometer. The Raman spectra of the samples were excited with the 488 nm line of an argon ion laser and

Liquid ^a		Cu-Ni-	y pic	Assignment ^a		
IR	Ra	IR	Ra			
3050	3051	3083	_	Α'	v ₁ CH str.	
3050	3051	3062			v_2 CH str.	
1211	1212	1218	1221		v V sons	
1211	1212	1207	1212		v3 A-Sells.	
1606	1606	1626	-		v4 ring str.	
1497	1497	1504	-		v5 ring str.	
1222	1221	1245 1231	1231		v ₆ CH bend i.p.	
1070	1071	1066	1070		v ₇ CH bend i.p.	
802	803	814	818		v ₈ X-sens	
996	996	1033	1032		v _o ring str.	
516	516	550	-		v_{10} X-sens.	
3070	_	3090	_	Α″	v ₁₁ CH str.	
3029	3034	3039	-		v ₁₂ CH str.	
1564	1565	1562	-		v ₁₃ ring str.	
1413	1413	1432	_		v_{14} ring str.	
1360	-	1360	_		v ₁₅ ring str.	
1280	1280	-	_		v ₁₆ CH bend i.p.	
-	344	357	358		v ₁₇ X-sens.	
1100	1094	1118	-		v_{18} CH bend i.p.	
-	671	670	673		v ₁₉ ring def. i.p.	
072	071	979			" CII hand a m	
915	971	958			v_{20} CH bend 0.p.	
870	874	875	-		v ₂₁ CH bend o.p.	
-	383	396	394		v_{22} ring def. o.p.	
870	874	875	-	\mathbf{A}'	v ₂₃ CH bend o.p.	
799	803	802	-		v ₂₄ CH bend o.p.	
727		718	-		v_{25} ring def. o.p.	
486	487	494	-		v ₂₆ CH bend o.p.	
-	214	-	217		v ₂₇ X-sens.	
2962	2964	2978	-		v_a (CH ₃)	
2924	2923	2924	2929		$v_s(CH_3)$	
1445	1454	1438	-		$\delta_a(\mathrm{CH}_3)$	
1381	1381	1381	1382		$\delta_s(\mathrm{CH}_3)$	
1041	1045	1033	-		CH ₃ rock	
			275		$v(M - N_{pic})$	

Table II. The fundamental vibrational wavenumbers (cm $^{-1})$ of γ -picoline in the Cu-Ni- γ -pic. complex

^a Taken from ref. 15.

the spectra were recorded on a SPEX Ramalog spectrometer with a slit width of 3 cm^{-1} by use of a spinning cell.

3. Results and Discussion

The vibrational wavenumbers of α -, β - or γ -picoline in the IR and Raman spectra of the Cu-Ni-L complexes are given in Tables I and II, together with the IR and Raman wavenumbers of the liquid picolines [14, 15]. It is noted that certain vibrations of α -, β - or γ -picoline show significant shifts (up to 34 cm⁻¹) to higher frequency when compared to the same vibrations in the neat liquids. Analogous shifts on coordination were observed in pyridine [6, 16] and α -, β - and γ -picoline complexes [8, 10, 15]. These were explained by the coupling of the internal modes of the ligand with the M–N (ligand) vibrations [17]. Since the vibrational spectra of the Cu-Ni-L complexes show all the characteristics of coordinated picoline, we propose that picoline molecules are directly bonded to the metal (Cu).

When the vibrational wavenumbers of Cu-Ni-L complexes (where $L = \alpha$ -, β - or γ -picoline) are compared with the previously reported analogous complexes M-Ni-L (M = Ni or Cd, $L = \alpha$ -, β - or γ -picoline) [8, 10] it is found that the differences between liquid and ligand values of α -, β - and γ -picoline are metal dependent and are greater in the copper complexes.

Cu-Ni-L (L = β - or γ -picoline) complexes are stable in air and do not show signs of decomposition, however the Cu-Ni- α pic complex is unstable once removed from the solution in which it is crystallized. Because of the rapid decomposition of the Cu-Ni-(α -pic) sample under laser excitation we were not able to record its spectrum.

The vibrational wavenumbers of the Ni(CN)₄ group are given in Table III together with the vibrational wavenumbers of the Cupy₂Ni(CN)₄ complex [6]. The v(CN) and δ (NiCN) vibrational frequencies are found to be similar to those of Hofmann-type clathrates [3] and pyridine complexes [6] indicating that {Cu-Ni(CN)₄}_∞ layers have been preserved. If the cyanide groups around the nickel atom have a local D_{4h} environment, one v(CN) (E_u) band only is expected in the IR spectrum and two other v(CN) (A_{1g} and B_{1g}) vibrations are expected in the Raman spectrum. However, two strong bands, rather than one are observed in the v(CN) (E_u) and also the δ (NiCN) (E_u) regions of the IR spectra of the Cu-Ni-L complexes.

Cu-Ni-α pic	Cu-Ni- β pic	Cu-Ni-γ pic	Cu-Ni-py ^b	Relative intensity	Assignment
n.m.	(2183)	(2179)	(2187)	vs	$v_1 A_{1g} v(CN)$
n.m.	(2150)	(2149)	(2154)	s	$v_4 B_{1r} v(CN)$
2175	2171	2164	2164 2174		
2142	2136	2136	2142	VS	$V_8 E_u V(CN)$
559	554	n.o.	558	w	$v_9 E_{\mu} v(\text{NiC})$
n.o.	454	n.o.	450	vw	$v_{12}A_{2\mu}\pi(\text{NiCN})$
445	439	437	441		$v_{10}E_u\delta(\text{NiCN})$
426	422	424	426	VS	

Table III. The wave numbers (cm⁻¹) of the Ni(CN)₄ group vibrations of the CuL₂Ni(CN)₄ (L = α -, β - or γ -picoline) and Cupy₂Ni(CN)₄ complexes^a

^a The bands observed in the infrared spectra are given without parentheses; the bands observed in the Raman spectra are given in parentheses.

^b Taken from ref. [6].

n.m. = not measured; n.o. = not observed; vs = very strong; s = strong; w = weak; vw = very weak.

The splitting points directly to a change of symmetry and removal of the degeneracy. This splitting was observed previously in the $Cu(NH_3)_2Ni(CN)_4 \cdot 2C_6H_5NH_2$ clathrate [3] and in the $Cupy_2Ni(CN)_4$ complex [6] and was accounted for in terms of a Jahn-Teller distortion which leads to two pairs of trans, non-identical Cu-NC bond lengths.

The v(CN) frequencies are found to be slightly dependent on the ligand (L). This is probably due to the changes of the strength of the Cu–NC bonds, since it is known that there is a mechanical coupling between the M–N and C \equiv N stretching modes [6].

We also recorded the low temperature (83 K) IR spectra of the samples. It is found that whilst the picoline frequencies are insensitive to temperature, $Ni(CN)_4$ frequencies increase with decreasing temperature (up to 8 cm⁻¹). This is thought to be due to a slight contraction in the cavity size with decreasing temperature. We still have not observed Raman active modes in the IR spectra at 83 K.

Acknowledgements

The Raman study was carried out at the University of Trieste, Italy, and the author wishes to thank Prof. Bigotto for allowing the use of the equipment in his laboratory. The author is also grateful to Prof. Abdus Salam, the International Atomic Energy Agency, and UNESCO for the hospitality at the International Centre for Theoretical Physics, Trieste.

References

- 1. T. Miyoshi, T. Iwamoto, and Y. Sasaki: Inorg. Chim. Acta 1, 120 (1967).
- 2. T. Iwamoto, T. Nakano, M. Morita, T. Miyoshi, T. Miyamoto, and Y. Sasaki: Inorg. Chim. Acta 2, 313 (1968).
- 3. S. Akyuz, A. B. Dempster, and R. L. Morehouse: Spectrochim. Acta 30A, 1989 (1974).
- 4. J. E. D. Davies, A.B. Dempster, and S. Suzuki: Spectrochim. Acta 30A, 1183 (1974).
- 5. S. Suzuki, W. J. Orville-Thomas, A. Sopkova, and J. Skorsepa: J. Mol. Struct. 54, 1 (1979).
- 6. S. Akyüz, A. B. Dempster, R. L. Morehouse, and S. Suzuki: J. Mol. Struct. 17, 105 (1973).
- 7. S. Akyüz: J. Mol. Struct. 68, 41 (1980).
- 8. S. Akyüz, J. E. D. Davies, Y. Demir, and N. Varman: J. Mol. Struct. 79, 267 (1982).
- 9. S. Agustoslu, S. Akyüz, and J. E. D. Davies: J. Mol. Struct. 114, 437 (1984).
- 10. S. Akyüz: J. Incl. Phenom. 3, 403 (1985).
- 11. L. E. Orgel: An Introduction to Transition-Metal Chemistry, Methuen, London, 1967.
- 12. L. E. Orgel and J. D. Dunitz: Nature (London) 179, 462 (1957).
- 13. T. Iwamoto: Isr. J. Chem. 18, 240 (1979).
- 14. J. H. S. Green, W. Kynaston, and H. M. Paisley: Spectrochim. Acta 19, 549 (1963).
- 15. S. Akyüz, J. E. D. Davies, and K. T. Holmes: J. Mol. Struct. 42, 59 (1977).
- 16. S. Akyüz, J. E. D. Davies, A. B. Dempster, and K. T. Holmes, J. Chem. Soc. Dalton Trans. 1746 (1976).
- 17. S. Suzuki and W. J. Orville-Thomas: J. Mol. Struct. 37, 321 (1977).